
Persistent Memory-Aware Scheduling
for Serverless Workloads

Amit Samanta1 Faraz Ahmed2 Lianjie Cao2 Ryan Stutsman1 Puneet Sharma2
1University of Utah, USA 2Hewlett Packard Labs, USA

Abstract—In the last few years, persistent memory (PM) has
become widely commercially available. PM’s direct load/store
interface allows fine-grained storage access that fully bypasses all
software I/O overheads. However, existing PM modules exhibit
performance anomalies, particularly when they are concurrently
accessed by many threads.

PM is poised to change how all applications access storage, and
in this paper we look at how PM might be best managed and
used in serverless applications. We make the case that server-
less presents a special opportunity for PM because serverless
platforms can use the structure of serverless applications to
gain more insight into their I/O behavior and because serverless
platforms include specialized schedulers that can exploit the com-
bined knowledge of application and PM behavior for managing
concurrent workloads.

Index Terms—Serverless computing, persistent memory,
scheduling, Intel Optane DCPMM.

I. Introduction
Commodity persistent memory (PM) in the form of In-

tel’s Optane DCPMM has recently transformed storage by
providing a fast and direct load/store access (like DRAM
in Table I) to persistent data. On its face, fine-grained ran-
dom access to persistent structures with no software and
no serialization/deserialization overheads could fundamentally
change how many applications approach I/O. However, like
all storage media, DCPMM has its idiosyncrasies that make it
hard to simply use it as a large, persistent RAM. Specifically,
DCPMM write bandwidth suffers substantially compared to
its read bandwidth, and that mismatch widens when many
concurrent threads write DCPMM simultaneously [1, 2, 3]. In
fact, as we show in §II, total effective write bandwidth with
DCPMM decreases with the number of concurrent writers.
As a result of this, common advice is to limit concurrent
writers to DCPMM to avoid write throughput bottlenecks and
collapse [1]; however, this is difficult to do if the set of thread
or applications to be run is not fixed in advance.

Instead, we argue that enforcing limits on concurrent
DCPMM writers is a matter of better scheduling and should
be handled by a scheduler rather than through fragile manual
tuning. By performing admission control among processes
that desire to write to DCPMM, it is possible to collectively
improve job completion time (JCT) for all processes that use
DCPMM. Such a scheduler can be implemented at different
layers. For example, such scheduling can be done by a kernel
CPU scheduler or in the user space by platform schedulers
[4, 5, 6] for containerized and serverless workloads [7, 8, 9, 10].
A challenge is that such a scheduler would need to be

aware of which tasks will perform DCPMM writes or reads,
which tasks are sensitive to being scheduled while DCPMM
is experiencing concurrent accesses, and the level of that
sensitivity. In short, this means that such a scheduler needs
some visibility into the structure of applications. Hence, in this
paper, we propose a new PM-aware scheduler for serverless
workloads, which expose sufficient structure for this type of
profiling and optimization.

Memory Modules Read Bw Write Bw Latency

DRAM 101 GB/s 79 GB/s 60-100ns
PM 37 GB/s 10.5 GB/s 300ns

Table I: DRAM & DCPMM performance characteristics.

Today’s serverless platforms [11, 12, 13] do not expose PM
to applications, so along with a motivation and design for a
PM-aware serverless scheduler, we also include a first analysis
of how serverless applications will interact with PM as it
becomes available in the cloud. For our analysis, we ported
a well-known serverless runtime, OpenFaas, to use PM and
instrumented it to collect information about applications’ PM
use. First, to motivate our PM-aware scheduler and its design,
we run microbenchmarks that show the effect of concurrent
DCPMM writers and the resulting poor performance. We also
demonstrate that constraining the number of concurrent writers
to DCPMM improves average JCT for a synthetic workload.
From those microbenchmarks, we outline a framework and
design for a realistic scheduler that can optimize JCT for
serverless workloads [7] when some set of the functions access
DCPMM. Such a scheduler must overcome several challenges
including: (1) extracting a model that determines when real
workloads will read/write DCPMM, (2) profiling how sensitive
functions are to interference from concurrent DCPMM access,
(3) combining these models into a (non-work-conserving)
scheduler that still results in overall efficiency and JCT im-
provements.

In summary, this paper makes the following contributions:
1) First, we demonstrate that concurrent writers in DCPMM

hurts performance, and then we show that using
DCPMM-aware CPU schedule improves the average JCT
and throughput.

2) Second, we outline the important challenges for an in-
telligent DCPMM-aware general thread scheduler that is
practically implementable and optimizes JCT.

3) Finally, we outline a design for similar DCPMM-aware
scheduler for serverless workloads.

II. Motivation
DCPMM write bandwidth collapses under concurrent

writes [1, 2, 14]; this effect is easy to replicate. In Figure 1, we
run an experiment where threads concurrently read or write to
DCPMM. We vary the number of concurrent threads, and we
plot the aggregate read/write bandwidth of the threads. Con-
current readers scale until the DCPMM bandwidth saturates
as expected. However, with concurrent writers the effective
bandwidth does not scale; in fact, it regresses.

 0

 10

 20

 30

 40

 4 8 12 16 20 24 28 32

B
a
n
d
w

id
th

 (
G

B
/s

)

Threads

Write
Read

Figure 1: DCPMM bandwidth vs. number of threads. Effective
BW under concurrency with interleaved Optane DCPMM.

The experiment machine has 32 cores, so this drop isn’t a
result of contention for CPU time; instead, it occurs because
each DCPMM module’s XP Buffer combines written back
cache lines in 256 B XP lines when written sequentially. Under
concurrent writes, XP lines are evicted from the XP Buffer
before they are completely filled, creating write amplification
and prematurely saturating DCPMM write bandwidth. Due to
this, DCPMM effective write bandwidth drops to around 60%
of its peak under many concurrent writers. Here, these 32
threads would be able to complete their work more quickly
(by nearly 2×) if they were run in serial.

Figure 2 shows the results of exploiting this effect. Like be-
fore, this experiment is run with multiple threads concurrently
reading and writing 4 GB each to DCPMM for an increasing
number of threads. Each thread repeatedly runs tasks where
the tasks write DCPMM (Only Write) or read/write DCPMM
(Read+Write). The y-axis shows the average job completion
time (JCT) of the tasks. Since the DCPMM write bandwidth
slows with increasing thread counts, JCTs increase substan-
tially as the count of concurrent write threads/tasks increases.
When tasks spend some of their time reading DCPMM, things
improve somewhat, but tasks are still suffer under this write
bandwidth bottleneck. In other words, when the workload
consists of both read and write tasks the average JCT drops;
however, the write bandwidth bottleneck still worsens the JCT
as thread concurrency increases.

The controlled schedule (green line) shows the average JCT
with a simplistic scheduler that we developed that restricts

the number of tasks that are allowed to concurrently write
the DCPMM at a time. This leads to a 2× improvement in
average JCT, showing that smarter scheduling can improve
performance.

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24 28 32

A
v
er

ag
e

JC
T

 (
s)

Threads

Only Write
Read+Write

Controlled

Figure 2: Average job completion time (JCT) for a set of tasks
with an unrestricted (Only Write, Read+Write) and restricted
(Controlled) number of concurrent writers.

However, our demonstration is contrived. The scheduler is
omniscient. It knows precisely which tasks read and write
DCPMM, when they read/write it, and how much. The tasks
are all uniform as well; for example, it doesn’t make sense
to limit concurrency if tasks run code that are CPU-bound. It
also doesn’t make sense to limit concurrency even when tasks
write DCPMM if their JCT isn’t sensitive to the bottleneck. A
realistic PM-aware scheduler would need to make these deci-
sions while adding little overhead to collect the information it
needs and in selecting tasks/threads to run.

III. Why Serverless Workloads?
Though these performance issues apply to many workloads

[2, 15], serverless workloads create a unique and special oppor-
tunity to address them. Serverless applications are composed
of individual functions that we can understand individually
(rather than trying to infer “phases” of opaque programs
or their internals). Similarly, by watching throughput and
response time, we can tell we are improving application-level
performance, something that is much harder to infer from
opaque applications.

Subsequently, recent work [16] has pointed out that the
serverless workloads will have improved performance by using
faster and higher bandwidth persistent storage (i.e., DCPMM).
Similarly, Katsakioris [17] et al. proposed a snapshotting
approach to avoid the cold start latency of serverless functions
by exploiting DCPMM. It brings cold start performance close
to warm for serverless workloads. The study also shows that
DCPMM is beneficial for serverless as the direct storage
access eliminates the data movement to DRAM, providing 2×
performance benefit.

Herein we focus mainly on serverless workloads, but for
general applications and workloads, it is possible to take a
more general approach. For example, it may be possible to do
similar scheduling as part of an OS scheduler or by building
PM-contention-aware scheduling on ghOSt [18], which is a

user-level scheduler framework. However, building such a
general scheduler precludes taking advantage of the extra
structure of serverless workloads; later, we plan to extend our
approach for general applications.

IV. Challenges in PM-Aware Scheduling
Though DCPMM creates a new opportunity for scheduling

to improve application-level performance, there are several
challenges in doing so for serverless applications. Those chal-
lenges include maintaining high throughput with low write-
amplification, inexpensive application profiling, and ensuring
application fairness. In the next section, we outline a de-
sign that addresses these issues that maximizes application
performance while ensuring fairness without interposing on
application PM accesses.

Challenge 1: High Throughput with Low Write-
Amplification. Some serverless functions will aggressively
mutate stored state; as Section II explains running such
functions concurrently will create write amplification which,
in turn, limits both read and write throughput. A smart
scheduler needs to understand which functions access and
mutate state, and it must limit concurrent writers to maintain
high throughput and low write amplification. This will also
minimize wear on DCPMM modules. One key challenge is
that simply serializing access to DCPMM modules doesn’t
always result in the best performance either, so an efficient
scheduler should be calibrated to understand precisely when
threads should be co-scheduled and when they should be
serialized in order to optimize overall JCT.

Another way to eliminate bottlenecks due to concurrent
writers is to partition the state that functions operate over
across DCPMM modules such that no two concurrently sched-
uled threads write to the same module at the same time.
Ideally, the serverless platform should control both thread
scheduling and data placement to minimize interference.

Challenge 2: Low-Overhead Profiling. PM performance
is highly workload dependent, but applications are mostly
opaque. To schedule workloads that use PM effectively, the
scheduler must understand how applications interact with
storage. Serverless helps with this because it breaks applica-
tions into functions that represent some common functionality
that can be profiled individually. This breaks the phases of
monolithic applications down into more predictable chunks
that can be profiled and scheduled individually.

A related challenge with PM is that, unlike workloads
that use traditional I/O interfaces, no software component
interposes on each PM storage access. To be effective, the
scheduler must be able to efficiently extract application access
patterns and adapt when workloads change without interposing
on every PM access.

Challenge 3: Fairness. Maximizing job throughput is an
important goal, but read bandwidth is greater than write band-
width on PM. In optimizing overall performance, the scheduler
must ensure fairness so that, for example, read-intensive ap-
plications don’t starve write-intensive applications. With PM,
this is more difficult than it is with traditional I/O interfaces

for two reasons. First, Linux’s CFQ block I/O scheduler
helps ensure fairness between applications with traditional I/O
accesses, but PM has no such scheduler since the kernel cannot
(efficiently) interpose on PM accesses. Second, concurrent
writers with other writers or readers cause slowdowns that
must be accounted for. Ideally, a PM-aware scheduler should
typically give all applications better performance than they
would receive if they are run concurrently rather than just
maximizing system throughput.

Even ignoring the challenge of interposing on I/O accesses,
such a scheduler cannot use the same approach as Linux’s
CFQ to enforce fairness, since CFQ results in scheduling
a single process’s I/Os at a time (according to a processes
weighted fair share). While such a schedule might minimize
cross-application interference, it fails to exploit the high I/O
parallelism that DCPMM provides, especially when the num-
ber of writers is limited.

Figure 3: High-level architectural view of PM-aware scheduler
for serverless workloads/applications.

V. PM-Aware Serverless Scheduling
To address these challenges, we are developing a new

serverless platform built on top of OpenFaas [19]. It runs
standard serverless applications which are composed out of
chained functions triggered by events such as incoming HTTP
requests. The functions for each triggered chain are scheduled
on worker nodes by a centralized scheduler. In our platform,
each serverless worker node is equipped with PM, giving
functions access to a few terabytes of local DCPMM.

We assume that any function can be run on any worker
node. PM between the worker nodes is neither shared nor

coherent; if an invocation of a function stores persistent state
on PM, it may be the case that future invocations of that
function don’t see the persisted data since they may be mapped
to other workers. This is typical for serverless functions,
which assume they must coordinate through shared storage
in order to bootstrap their state or to forward output to one
another. Approaches that provide shared memory semantics
between invocations are interesting, but today they all require
software interposition on storage accesses which negates direct
load/store performance benefit of PM. Although, CXL and
other emerging coherent interconnects that can support remote
shared memory through a load/store interface could change
that [20].

Figure 3 shows the overall design of the platform with
the three new components we add to OpenFaas for PM-
aware scheduling. The Online Profiler 1 profiles serverless
applications as they run to determine how each function of
each application interacts with PM. The Per-Function I/O
Prediction Model 2 predicts the PM I/O demands and pat-
terns of functions that enter into the scheduling queue based
on their past behavior. The PM Performance Model 3 is
constructed using microbenchmarks similar to Section II; it
predicts how given PM I/O patterns will affect one another
if run concurrently. The PM-aware Scheduler 4 consults the
I/O prediction model, the I/O performance model, and per-
application resource consumption statistics from the resource
manager to place and schedule function invocations among
the set of available worker nodes in the cluster, attempting to
maximize throughput while respecting fairness. Note, this does
not imply minimizing interference, since serializing execution
per worker generally does not maximize throughput. Here, we
discuss how this PM-aware Scheduler addresses the challenges
laid out in §IV.

High Throughput with Low Write-Amplification. The Per-
Function Model informs the PM-aware scheduler about how
aggressively each function reads and writes state along with
details on access granularity and information on how much
the function is influenced by slowdowns to PM access (this
depends, for example, on how many data dependencies there
are between a function’s PM accesses, which the model can
infer from collected CPU performance counters). Combin-
ing this with the PM Performance Model, we plan for our
scheduler to implement a read-prefer-write-limit policy. In the
presence of functions that both read and write PM, the read-
prefer-write-limit policy prioritizes read-intensive functions
while concurrently scheduling write-intensive functions up to
the point that overall throughput worsens. Additional writers
would be delayed until the reads are completed.

We are also considering letting the scheduler decide which
DCPMM DIMMs should be used to store state for specific
applications or functions. In this model, the scheduler would
try to avoid interference by partitioning state intelligently
across the DIMMs. For example, if a function mainly read
state and was generally CPU-bound, then a single DIMM
might be sufficient to prevent bottlenecks in it. In this case,
the scheduler could pack the function’s state on one DIMM

where it is expected that concurrent writes to be rare. Another
possibility is to let the scheduler choose which DIMMs a
function invocation writes to, letting the scheduler avoid
interference by segregating reads/writes. The scheduler has
flexibility since it need not guarantee that all invocations of
a function see the results produced by prior invocations (this
can already happen when invocations run on separate worker
nodes). We plan to experiment with an indirection layer that
tracks where data is written to PM, which lets the schedule
control how writes are mapped to DIMMs.

Low-Overhead Profiling. Past behavior of functions help
predict their future accesses, but monitoring PM accesses of
functions is challenging since the I/O path isn’t exposed to
software. To solve this, our platform will use performance
counters to track the amount of data read from and written
to PM. By tracking the total memory accesses, we believe it
should be possible to make inferences about typical access
granularities. We plan to update the Per-Function I/O Pre-
diction Model after each invocation of a function completes
using performance counters, which effectively have no runtime
overhead. We can also use performance counters that track
CPU stalled cycles combined with counts of accesses to PM
to score functions on how sensitive they are to PM latency as
compared to PM bandwidth.

Fairness. Finally, since read-prefer-write-limit could lead
to starvation, the schedulers policy will also employ multi-
resource fair queuing [21, 22] (with CPU, PM read bandwidth,
and PM write bandwidth resources separated out, accounting
for the dependency between PM read/write bandwidth) with
a form of aging that lets reads be prioritized over writes,
but which bounds delay of writers by boosting priority for
functions that remained enqueued too long.

VI. Related Work
The increase in data size, the complexity of serverless

workloads, and heterogeneity of storage infrastructure has
created new challenges for serverless platforms. The serverless
paradigm provides fine-grained resource orchestration and
scalability, but data transfer between serverless functions can
become a scaling bottleneck. This is because parallel I/O
operations result from running multiple functions concurrently.

To resolve this bottleneck, existing systems (such as
Pocket [23], SONIC [24], Locus [25], and Jiffy [26]) store
the data in virtual machines (VMs) for functions with few
dependencies [24], and they use remote storage for functions
with wide dependencies [23, 26]. Jiffy [26] is an elastic far-
memory system for serverless analytics that meets the memory
demand of serverless tasks. Pocket and Jiffy address the
problem of resource scaling for stateful serverless workloads.
Wukong [27] also addresses the problem of scheduling server-
less functions to reduce data movement. However, none of
these approaches consider the impact of the idiosyncrasies
of the storage medium on application performance in their
scheduler designs (e.g., read-prefer-write-limit policy in §V).
Further, they do not consider fairness when running concur-

rent serverless jobs. Locus [25] is one such effort that uses
fast and slow storage to deal with such bottlenecks while
considering storage costs. However, there is no prior work
(as per our knowledge) that explores the potential of PM
(i.e., DCPMM) for serverless workloads. Further, no existing
serverless platform supports PM for persistent storage along
with other storage options. Thus, there is a scope for designing
PM-aware scheduler for serverless workloads which improves
efficiency and scales with growing data size while providing
higher throughput and lower JCT.

OdinFS is a specialized file system designed for PM [28].
It is able to carefully “shape” accesses to PM modules (via
delegation of writes to a small number of threads). However,
it can only do this because it is not a DAX file system: all data
access in OdinFS requires software interposition (as explicit
read/write syscalls). A key idea in our approach is that we
still support direct load-store access to PM data by CPU cores.
This eliminates all software overhead for storage access, but
it leaves us with the drawback that we can only control the
scheduling of loads/stores at a coarser grain and only indirectly
by controlling thread or function scheduling. How the software
and CPU overheads of an approach like OdinFS compare with
an indirect, DAX-like approach like ours is an interesting
question that we plan to examine.

VII. Discussions

Use Cases. We target intermediate storage between functions
and cases where instances of a function produce PM files
where they might share concurrent access to memory-mapped
state. Serverless applications often use key-value/object stores
and message brokers to coordinate communication between
functions. There has been a push toward shared-memory
architectures for serverless function communication. Using
shared memory significantly reduces the overheads associated
with data access for serverless functions [29]. With shared
memory, we can imagine a function that generates a B-
tree index (if it doesn’t exist) on PM that other invocations
can access and even update — leading to a shared memory
data structure. In our current design, we wouldn’t guarantee
invocations run where the B-tree is, but then if functions run
on other machines, they could similarly construct a local index
and do the same on a different worker.

Profiling Overhead. Our current plan for profiling is purely
online/dynamic. Static profiling is possible (by distinguishing
loads and stores), but things like function inputs could cause
wildly different access patterns making it hard to infer the
quantity of loads/stores statically. Instead, we try to limit
the overhead of runtime profiling by only repeating heavy-
weight profiling when our statistics seem to be inaccurate for
a specific function. Once we have a handle on how much
overhead profiling adds overall in realistic workloads, we’ll
be in a better position to understand how much static profiling
might help.

Prediction Accuracy. The predictions for a specific function
need to vary based on expected contention with concurrent
writers. Our plan is that each function’s performance model

will be a function of the expected amount of data written
during its scheduled interval, but when we update the model
we’ll do so only based on how much data was actually written
(by other concurrent functions) when it ran. In some cases, we
may desire to run a function with more or less write contention
than we have seen in the past; in that case, our best bet is to
just use the prediction with the closest amount of contention
that we’ve seen in the past – initially these predictions won’t
be accurate, but if that scenario arises repeatedly and the
function’s behavior is stable it should converge quickly. We’re
considering simple models like exponentially weighted mov-
ing averages for tracking how much data functions read and
write, but we’re interested in seeing how more sophisticated
models work as well (e.g. using reinforcement learning).

Persistence. PM can be used to recover from application-
level faults since it is persistent with additional PM capacity
over DRAM. PM data persists across host crashes, but this
aspect of PM is unlikely to help the applications we target
since on a host crash functions will need to be re-executed
on another machine where the data isn’t resident in PM.
This isn’t a drawback specific to our paper; PM generally
doesn’t help improve performance (over other durable media)
when high availability is needed since remote replication is
needed for availability and remote access costs dominate.
Remote replication generally puts software back in the data
access path, which would make our scheduling optimizations
less important (techniques like those used in OdinFS can be
used to mitigate contention if the software is on the access
path). We have begun to explore how we can get OdinFS-like
optimizations that shape PM accesses without adding software
on the access path (by relying on hardware accelerators), but
that work is beyond the scope of this paper. Finally, concurrent
invocations of the same function can concurrently access and
modify PM files, providing a benefit of shared memory within
functions. We plan to extend this to also allow different
functions and different tenants to share concurrent access to
PM files, though we need to define an access control model
before that is safe.

Resource Idleness. Resource idleness may arise on worker
nodes if the PM resources are overallocated to applications.
To handle the resource idleness problem, the number and size
of PMs in each worker node need to be utilized appropriately.
However, all the functions are scheduled through a centralized
scheduler, which may introduce the performance bottleneck.
We plan to mitigate this with our two-level scheduling ap-
proach: the scheduler assigns work to workers, which then
perform admission control to avoid too many concurrent
writers. This approach helps us avoid the resource idleness
as a bottleneck up to some point since the effort to enforce
scheduling is subdivided among workers.

VIII. Is Commercial PM Dead?
After just a few years on the commercial market, Intel

recently announced the end of development and manufacture
of these 3D XPoint-based Persistent Memory Modules [30].

This is a major setback in the roadmap to pervasive use of
PM in systems, since Optane DCPMM was the first PM with
a direct load/store interface that was widely commercially
available, had a lower price per bit than DRAM (though it
was unclear whether its cost to produce was fundamentally
lower), and had access latencies that approached DRAM’s.
Nonetheless, there are several reasons why PM and PM
research is still practical and important.

First, it took more than a decade of work to bring practical
PM to modern CPU architectures, and all that hard work in
refining interfaces and CPU architectures is now embedded
and deployed most data center systems with today’s archi-
tectures and operating systems. For example, today Intel [31],
ARM [32], RISC-V [33], and POWER [34] CPUs all now ship
with ISA-level support for interacting with PM safely; most
major server operating system kernels include support for it
as well. JEDEC has also recently standardized persistent main
memories [35] that complement longer-standing approaches
that combine DRAM and Flash for NVDIMM support.

Second, there are still commercial PM offerings [36, 37]
(often pairing DRAM, NAND Flash, and supercapacitors), and
there are more still on track for commercial release [38, 39],
with new media that span from magnetoresistive RAM to
carbon nanotube-based RAM.

Third, CXL/PCIExpress attached devices now emerging that
implement the CXL.cache and CXL.mem interfaces which
will allow direct load/store access to massive memories on
one host [20], creating pressure for more high-capacity PM
devices and DRAM+NAND Flash-based PM solutions. For
example, Samsung already commercially offers devices that
can provide 16 TB of volatile DRAM per machine on CXL
in this fashion today [40].

Finally, by exposing such devices over the network it
is possible to build PM out of large volatile memo-
ries [41, 42, 43, 44]. All of the PM support in CPUs today are
key to making use of such distributed PMs through hardware
interfaces.

In short, despite the demise of Intel’s commercial PM
offering, the foundations for using PM in applications and
building new PM solutions still remain in place, making this
a rich and important topic for research. Optimistically, it is
even possible that Intel Optane’s demise will help prevent
the systems community from focusing too heavily on one
implementation of PM and its specific idiosyncrasies.

IX. Status & Roadmap
Our initial benchmarks using PM have shown us the poten-

tial benefits of PM-aware scheduling for serverless workloads,
and they have led us to our initial PM-aware scheduler design.
In the short term, our plan is to demonstrate this design on
OpenFaas so that we can determine what practical gains PM-
aware policies can offer. As we gain experience with work-
loads, our plan is to find ways to incorporate strong notions
of fairness while preserving PM’s performance benefits and to
determine where serverless application storage access patterns
are easier and harder to predict.

Overall, we believe that PM-aware scheduling will be an
important step forward for serverless workloads in extracting
value out of new PM technologies.

References
[1] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An empirical

guide to the behavior and use of scalable persistent memory,” in Proceedings of
the USENIX Conference on File and Storage Technologies (FAST), Santa Clara,
CA, 2020, pp. 169–182.

[2] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl, “Maximizing persistent memory
bandwidth utilization for OLAP workloads,” in Proceedings of the International
Conference on Management of Data (SIGMOD), 2021, pp. 339–351.

[3] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions for fast
remote persistent memory access,” in Proceedings of the ACM Symposium on Cloud
Computing (SOCC), 2020, p. 105–119.

[4] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica, “Caerus: Nimble task
scheduling for serverless analytics,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2021, pp. 653–669.

[5] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kandemir, and C. R.
Das, “Fifer: Tackling resource underutilization in the serverless era,” in Proceedings
of the International Middleware Conference (Middleware), 2020, pp. 280–295.

[6] L. Zhao, Y. Yang, Y. Li, X. Zhou, and K. Li, “Understanding, predicting and
scheduling serverless workloads under partial interference,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2021, pp. 1–15.

[7] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the wild: Char-
acterizing and optimizing the serverless workload at a large cloud provider,” in
Proceedings of USENIX Annual Technical Conference (ATC), 2020, pp. 205–218.

[8] Y. Zhang, Í. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and
R. Bianchini, “Faster and cheaper serverless computing on harvested resources,”
in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
2021, pp. 724–739.

[9] Z. Guo, Z. Blanco, M. Shahrad, Z. Wei, B. Dong, J. Li, I. Pota, H. Xu, and Y. Zhang,
“Resource-centric serverless computing,” arXiv preprint arXiv:2206.13444, 2022.

[10] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. Garcı́a-López, “Serverless data
analytics in the ibm cloud,” in Proceedings of the 19th International Middleware
Conference Industry, 2018, pp. 1–8.

[11] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar, R. A.
Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson, “What serverless computing
is and should become: The next phase of cloud computing,” Communications of
the ACM, pp. 76–84, 2021.

[12] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M. Hellerstein,
and A. Tumanov, “Cloudburst: Stateful Functions-as-a-Service,” Proceedings of the
VLDB Endowment, vol. 13, no. 11, 2020.

[13] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: warming serverless functions
better with heterogeneity,” in Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2022, pp. 753–767.

[14] Y. Yang, Q. Cao, J. Yao, Y. Dong, and W. Kong, “Spmfs: A scalable persistent
memory file system on optane persistent memory,” in Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP), 2021.

[15] D. Koutsoukos, R. Bhartia, A. Klimovic, and G. Alonso, “How to use persistent
memory in your database,” arXiv preprint arXiv:2112.00425, 2021.

[16] A. Uyar, S. Akkas, J. Li, and J. Fox, “Intel optane dcpmm and serverless
computing,” arXiv preprint arXiv:2109.11021, 2021.

[17] C. Katsakioris, C. Alverti, V. Karakostas, K. Nikas, G. Goumas, and N. Koziris,
“Faas in the age of (sub-) µs i/o: a performance analysis of snapshotting,” in
Proceedings of the 15th ACM International Conference on Systems and Storage,
2022, pp. 13–25.

[18] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don, L. Rizzo,
O. Rombakh, P. Turner, and C. Kozyrakis, “ghOSt: Fast & Flexible User-space
Delegation of Linux Scheduling,” in Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2021, pp. 588–604.

[19] OpenFaas, “https://github.com/openfaas/faas,” Open Source Serverless Platform.
[20] “HOME — Compute Express Link,” https://www.computeexpresslink.org/, 2023,

[Online; accessed 03-Mar-2023].
[21] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair queueing for

packet processing,” in Proceedings of the ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIGCOMM),
2012, pp. 1–12.

[22] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and fairness
for multi-tenant cloud storage,” in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2012, pp. 349–362.

[23] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket:
Elastic ephemeral storage for serverless analytics,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Carlsbad,
CA, Oct. 2018, pp. 427–444.

[24] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and S. Bagchi,
“SONIC: Application-aware data passing for chained serverless applications,” in
Proceedings of the USENIX Annual Technical Conference (ATC), Jul. 2021.

https://github.com/openfaas/faas
https://www.computeexpresslink.org/

[25] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable
analytics on serverless infrastructure,” in Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), Boston, MA, Feb. 2019,
pp. 193–206.

[26] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica, “Jiffy: elastic
far-memory for stateful serverless analytics,” in Proceedings of the European
Conference on Computer Systems (EuroSys), 2022, pp. 697–713.

[27] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng, “Wukong: A
scalable and locality-enhanced framework for serverless parallel computing,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020, pp. 1–15.

[28] D. Zhou, Y. Qian, V. Gupta, Z. Yang, C. Min, and S. Kashyap, “ODINFS: Scaling
PM Performance with Opportunistic Delegation,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2022, pp.
179–193.

[29] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. Ramakrishnan, “SPRIGHT: Extracting
the Server from Serverless Computing! High-performance eBPF-based Event-
driven, Shared-memory,” in Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2022, pp. 780–794.

[30] R. Smith, “Intel To Wind Down Optane Memory Business,” https://www.anandtech.
com/show/17515/intel-to-wind-down-optane-memory-business, 2022.

[31] “Brief: Intel optane persistent memory,” https://www.intel.la/content/
www/xl/es/products/docs/memory-storage/optane-persistent-memory/
optane-dc-persistent-memory-brief.html.

[32] W. Wang, “Architectural support for persistent memory pro-
gramming,” https://community.arm.com/arm-research/b/articles/posts/
simplifying-persistent-programming-with-microarchitectural-support, 2021.

[33] M. Larabel, “Risc-v adds support for persistent memory devices,” https://www.
phoronix.com/news/Linux-6.2-RISC-V, 2022.

[34] A. Khan, “Persistent memory enhancements on ibm
power systems,” https://www.ibm.com/blogs/systems/

persistent-memory-related-enhancements-on-ibm-power-systems-for-sap-hana/,
2019.

[35] “Non-volatile Dual In-line Memory Module,” https://
www.intel.com/content/www/us/en/developer/articles/technical/
enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.
html, 2019.

[36] “Agigaram NVDIMM,” http://agigatech.com/products/agigaram-nvdimms/.
[37] “HPE NVM,” https://www.hpe.com/us/en/storage/hpe-memory-driven-flash.html.
[38] “Nantero NRAM,” https://www.nantero.com/.
[39] “Emerging Memory Report,” https://thememoryguy.com/

emerging-memory-report-updated/.
[40] “Samsung CXL Module,” https://news.samsung.com/global/

samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module,
2022.

[41] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro,
S. J. Park, H. Qin, M. Rosenblum et al., “The ramcloud storage system,” ACM
Transactions on Computer Systems (TOCS), vol. 33, no. 3, pp. 1–55, 2015.

[42] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum et al., “The case for ramclouds:
scalable high-performance storage entirely in dram,” ACM SIGOPS Operating
Systems Review, vol. 43, no. 4, pp. 92–105, 2010.

[43] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast Remote
Memory,” in 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14). Seattle, WA: USENIX Association, Apr. 2014, pp. 401–414.

[44] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro, “No Compromises: Distributed Transactions with
Consistency, Availability, and Performance,” in Proceedings of the 25th Symposium
on Operating Systems Principles, ser. SOSP ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 54–70.

https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business
https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business
https://www.intel.la/content/www/xl/es/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.la/content/www/xl/es/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.la/content/www/xl/es/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://community.arm.com/arm-research/b/articles/posts/simplifying-persistent-programming-with-microarchitectural-support
https://community.arm.com/arm-research/b/articles/posts/simplifying-persistent-programming-with-microarchitectural-support
https://www.phoronix.com/news/Linux-6.2-RISC-V
https://www.phoronix.com/news/Linux-6.2-RISC-V
https://www.ibm.com/blogs/systems/persistent-memory-related-enhancements-on-ibm-power-systems-for-sap-hana/
https://www.ibm.com/blogs/systems/persistent-memory-related-enhancements-on-ibm-power-systems-for-sap-hana/
https://www.intel.com/content/www/us/en/developer/articles/technical/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://www.intel.com/content/www/us/en/developer/articles/technical/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://www.intel.com/content/www/us/en/developer/articles/technical/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://www.intel.com/content/www/us/en/developer/articles/technical/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
http://agigatech.com/products/agigaram-nvdimms/
https://www.hpe.com/us/en/storage/hpe-memory-driven-flash.html
https://www.nantero.com/
https://thememoryguy.com/emerging-memory-report-updated/
https://thememoryguy.com/emerging-memory-report-updated/
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module

	Introduction
	Motivation
	Why Serverless Workloads?
	Challenges in PM-Aware Scheduling
	PM-Aware Serverless Scheduling
	Related Work
	Discussions
	Is Commercial PM Dead?
	Status & Roadmap
	References

