
Nimble: QoS-Aware Resource Management for
Edge-Assisted Microservice Environments

Amit Samanta
University of Utah

Abstract
We propose Nimble, a QoS-aware resource management
framework for edge-assisted microservice environments. We
build a preliminary prototype of Nimble and show its appli-
cability in terms of resource utilization and execution latency
for microservices in a small-scale testbed setup.

CCS Concepts
• Computer systems organization → Cloud computing.

Keywords
Microservice environments, resource management, QoS.
ACM Reference Format:
Amit Samanta. 2023. Nimble: QoS-Aware Resource Management
for Edge-Assisted Microservice Environments. In The 29th Annual
International Conference onMobile Computing and Networking (ACM
MobiCom ’23), October 2–6, 2023, Madrid, Spain. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3570361.3615738

1 Introduction
With the increase number of Internet-of-Things (IoT) appli-
cations [4, 9, 13, 15, 22, 24] and programmability of cloud
platforms, most of the applications are uploaded frommobile
to cloud platforms. However, uploading to cloud platforms
incur high latency due to limited effective bandwidth and
link failures, therefore it fails to provide Quality-of-Service
(QoS) requirements to IoT applications, such as video stream-
ing and virtual reality [6]. Such problems are resolved by
introducing the edge computing platforms [8, 10, 23], it basi-
cally minimizes the network latency and optimizes the avail-
able resources. These days, edge platforms have adopted
microservice-oriented frameworks [3], where the applica-
tions are decomposed into small and independent microser-
vices to provide better performance to edge-assisted users [7].
The microservice-oriented framework [2, 11, 12, 17, 18, 21]
provides better parallelism and efficiency to services on the
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9990-6/23/10. . .$15.00
https://doi.org/10.1145/3570361.3615738

edge-assisted servers using standard containerized technol-
ogy to enable easy programmability, minimal deployment
efforts and low cost for their executions. The containerized
framework of microservice instances is considered to be one
of the important example of edge platforms. Here, the IoT
applications are decomposed into a significant number of
microservices and their instances are executed on the edge-
assisted servers to optimize the performance.
The main property of such microservice-oriented edge

platforms is to execute the microservice instances efficiently
placed on the containers of edge-assisted servers. On edge
platforms, the microservices are mostly presented in terms
of Function-as-a-Service. The edge-assisted containers pro-
vide heterogeneous resources [20] (CPU, memory, storage,
network) to microservice instances for efficient execution
and be in the service of incoming edge-assisted users while
maintaining the minimal resource provisioning price. For
most of the edge platforms providing minimal pricing and
latency to edge-assisted users comes among the highest pri-
orities. The incurred provisioning price of microservices
comes from the operational price of edge-assisted servers
and managing/scaling the containers, which is mainly deter-
mined by the fractures and the variety of containers serv-
ing several kinds of microservices. Similarly, the edge plat-
forms need to spawn up brand new microservice instances
on the edge-assisted servers, which includes migration of
container images, starting and connecting them to appro-
priate instances. This basically incurs the deployment price,
which is determined based on the price of running containers
for a particularity duration. Hence, it needs to be optimized,
by circumventing recurrent deployment and expulsion of
microservice instances. This work tackles the problem of
providing adequate amount of resources to microservices for
edge platforms. Given the multiple containers are running in
edge-assisted servers, the main question is: how to allocate
resource fairly and adequately to microservices to acceler-
ate their execution with fluctuating workload changes and
achieve better QoS for edge-assisted users. The important
challenge in designing such solution is to come up with an
online algorithm to accomplish the upper-mentioned objec-
tives in the presence of rapid workload changes significantly
over time. We present Nimble, a QoS-aware resource man-
agement framework for microservices, which provides better
resource utilization and minimal latency.

https://doi.org/10.1145/3570361.3615738
https://doi.org/10.1145/3570361.3615738

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain A. Samanta

2 QoS-Aware Resource Management for
Microservice Environments

The main objective of QoS-aware resource management
framework is to provide adequate amount of resources to
microservices and place them in the edge-assisted containers
to optimize the resource utilization of microservice environ-
ments over time slot 𝑇 . We formulate the scaling factors: (a)
container placement factor I𝑖 (𝑡), it represents the number of
microservice 𝑖 instances placed on edge-assisted server 𝑠 at
time 𝑡 ; (b) resource management variable J𝑖 (𝑡), it represents
the unit amount of resources available in a container for
microservice 𝑖 on edge-assisted server 𝑠 at time 𝑡 . The total
resource management price are discussed as:
Price Estimation: To approximate the total resource man-
agement price, we design a price estimation framework.

• Functional Price: Suppose 𝛼𝑖 presents the unit price of
running and offloading an instance of microservice 𝑖 to
edge-assisted servers at time 𝑡 , basically ascribed as the
functional price. Therefore, the total functional price is
described as:

P𝑓 𝑢𝑛 =
∑︁
𝑡 ∈ |𝑇 |

∑︁
𝑠∈ |𝑆 |

∑︁
𝑖∈ |𝑀 |

𝛼𝑖I𝑖 (𝑡) (1)

• Placement Price: While placing a brand new instance
of microservice 𝑖 , the framework needs to migrate the
image of microservices to new containers on the edge-
assisted servers. We consider the unit placement price
𝛽𝑖 for microservices. Therefore, the overall placement
price is described as:

P𝑝𝑙 =
∑︁
𝑡 ∈ |𝑇 |

∑︁
𝑠∈ |𝑆 |

∑︁
𝑖∈ |𝑀 |

𝛽𝑖I𝑖,𝑛𝑒𝑤 (𝑡) (2)

where I𝑖,𝑛𝑒𝑤 (𝑡) indicates the newly added instance of
microservice 𝑖 on edge-assisted server 𝑠 at time 𝑡 .

• Execution Price: Once the placement, the microservices
are allocated container resources on the edge-assisted
servers for execution. We consider the unit resource
management price 𝜗𝑖 for microservices. The overall
resource management price is described as:

P𝑟𝑒 =
∑︁
𝑡 ∈ |𝑇 |

∑︁
𝑣∈ |𝑉 |

∑︁
𝑖∈ |𝑆 |

W𝜗𝑖J𝑖 (𝑡) (3)

where W indicates number of microservices present
in a container. The aim is to optimize total price P𝑡𝑜 =

P𝑓 𝑢𝑛 + P𝑝𝑙 + P𝑟𝑒 .

Resource Management Framework: Following the price
estimation, we expressed the QoS-aware resource manage-
ment optimization problem for microservices. The problem

directs to allocate resources to microservices while provid-
ing QoS to edge-assisted users, as microservices require ad-
equate amount of container resources for their execution.
Thus, we design a QoS-aware resource management opti-
mization framework considering total management cost and
resource utilization. We construct a joint resource optimiza-
tion framework for microservices. Therefore, we have,

Min
∑︁
𝑡 ∈ |𝑇 |

∑︁
𝑠∈ |𝑆 |

∑︁
𝑖∈ |𝑀 |

[resource utility︷︸︸︷
R𝑡

U,𝑖
= 𝜒1P𝑡𝑜︸︷︷︸

total price

− 𝜒2
Q𝑡
𝑖

Q𝑡
𝑡ℎ︸ ︷︷ ︸

QoS factor

]
, (4)

subject to 𝜒1, 𝜒2 = {0, 1}, (5)

P𝑡𝑜 ≤ P𝑡ℎ
𝑡𝑜 ,∀𝑖 ∈ |𝑀 |, (6)

Q𝑡
𝑖 ≥ Q𝑡

𝑡ℎ
,∀𝑖 ∈ |𝑀 |, 𝑡 ∈ |𝑇 |, (7)

where |𝑆 | and |𝑀 | indicate the number of microservices and
edge-assisted servers, P𝑡ℎ

𝑡𝑜 indicates the threshold manage-
ment price, Q𝑡

𝑖 and Q𝑡
𝑡ℎ

indicate the measured and threshold
QoS factor. (4) indicates the joint optimization problem for
microservices. The scaling factors are discussed in (5). (6)
indicates that the total costP𝑡𝑜 needs to be lesser than thresh-
old cost P𝑡ℎ

𝑡𝑜 . (7) indicates that the measured QoS factor Q𝑡
𝑖

needs to be lesser than the threshold QoS factor Q𝑡
𝑡ℎ
. Fol-

lowing the properties of linear optimization problem, we
designed the heuristics for Nimble and solve the integer
liner program (ILP). It provides minimal computational com-
plexity than other methods. We compare Nimble with other
methods - Oracle (requires prior microservice information)
and greedy solution.

3 Preliminary Results

We design an initial small-scale prototype to emulate the
Nimble framework and edge platforms by software wrapping
[7, 8, 14, 19]. In the current form, it shows some initial per-
formance advantages, but it may not be able to provide the
full functionalities of Nimble. The evaluation was done on
a 9 server m510 cluster of Intel Xeon D-1548, 2.0 GHz CPU
and 64 GB ECC Memory with DDR4 RAM on the CloudLab
testbed. We consider a client/server configuration to gen-
erate the microservices from hotel reservation application
and estimate the resource utilization. The hotel reservation
application is running on a single server and offloading the
microservices to other 8 edge-assisted servers to execute the
microservices effectively. The edge-assisted servers dwell
on Ubuntu 20.04 with Linux Kernel 4.15 and equipped with
Dual-port Mellanox ConnectX-3 10 GB NIC. For the genera-
tion of microservice workloads, the Poisson distribution is
considered with mean between 0 and 0.5.

Nimble: QoS-Aware Resource Management for Edge-Assisted Microservice Environments ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Experimental Setup. For the experiments, 50 edge-assisted
users are considered and they are equipped with IoT de-
vices running hotel reservation application [1]. The compute
power of IoT device is 0.7 GHz. The backhaul latency is
setup to be 0.0001 sec/KB [5, 25]. The total time to offload
and place the microservices to edge-assited servers are ar-
bitrarily originated between 25 and 50 ms. We vary P𝑡𝑜𝑡
within [20, 60]. The intermediate data generated between
microservices varies within the range of 1 and 10MB. The
latency of IoT devices is considered to be within 0.5-1s.

 0

 100

 200

 300

 400

10 20 30 40 50

T
o

ta
l

L
at

en
cy

 (
m

s)

Number of Edge Users

Oracle
Greedy
Nimble

(a) Total Latency

 0

 20

 40

 60

 80

 100

 10 20 30 40 50

R
es

o
u

rc
e

U
ti

li
za

ti
o
n

 (
%

)

Number of Edge Users

Oracle
Greedy
Nimble

(b) Resource Utilization

Figure 1: Latency and resource utilization of Nimble.

Discussion. Fig. 1(a) represents the total latency (i.e., of-
floading, placing and executing) incurred by microservices
for hotel reservation application. The QoS-aware resource
management allows efficient execution of microservices with
Nimble, as Nimble provides fair amount of resources to mi-
croservices. We also measure the resource utilization of mi-
croservices. Nimble assists the edge-assisted users to place
and offload the microservices optimally, which allows them
to efficiently use the allocated resources and optimize the to-
tal resource management price. Therefore, Nimble provides
higher resource utilization in Fig. 1(b). Nimble is compared
with the existing methods Greedy and Oracle. We observe
that Nimble surpasses the other methods.
4 Future Directions
In future, we would like to evaluate Nimble with large-scale
experiments to explore it’s full functionality. The main idea
is to complete the full implementation of Nimble with dis-
tributed edge platforms with a large-scale CloudLab cluster.
We would like to explore other microservice applications
such as Social Network. We would also like to propose an
auto-tuning framework for microservices [16] by enforcing
dynamic re-configurations of applications.

References
[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In ACM ASPLOS. 3–18.

[2] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2020. Unveiling
the hardware and software implications of microservices in cloud and edge
systems. IEEE Micro 40, 3 (2020), 10–19.

[3] Zhipeng Jia and EmmettWitchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In ACM ASPLOS. 152–
166.

[4] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge. In ACM ASPLOS. 615–629.

[5] Xiaoyan Kui, Amit Samanta, Xiangming Zhu, Shigeng Zhang, Yong Li, and Pan
Hui. 2018. Energy-aware temporal reachability graphs for time-varying mobile
opportunistic networks. IEEE TVT 67, 10 (2018), 9831–9844.

[6] Qiang Liu and Tao Han. 2018. DARE: Dynamic Adaptive Mobile Augmented
Reality with Edge Computing. In IEEE ICNP. 1–11.

[7] Amit Samanta and Zheng Chang. 2019. Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint. IEEE IoTJ 6, 2
(2019), 3864–3872.

[8] Amit Samanta, Zheng Chang, and Zhu Han. 2018. Latency-Oblivious Distributed
Task Scheduling for Mobile Edge Computing. In IEEE GLOBECOM. 1–7.

[9] Amit Samanta, Xinlei Chen, and Yong Li. 2019. Poster: FlexDP-Flexible Data
Plane for ENFV. In ACM MobiCom.

[10] Amit Samanta, Flavio Esposito, and Tri Gia Nguyen. 2021. Fault-tolerant mech-
anism for edge-based IoT networks with demand uncertainty. IEEE IoTJ 8, 23
(2021), 16963–16971.

[11] Amit Samanta, Flavio Esposito, and Tri Gia Nguyen. 2023. ASAP: Adaptive and
Scalable Microservice Provisioning for Edge-IoT Networks. In IEEE/IFIP WONS.
80–87.

[12] Amit Samanta, Lei Jiao, Max Mühlhäuser, and Lin Wang. 2019. Incentivizing
Microservices for Online Resource Sharing in Edge Clouds. In IEEE ICDCS. 420–
430.

[13] Amit Samanta and Yong Li. 2017. DeServE: Delay-agnostic Service Offloading in
Mobile Edge Clouds: Poster. In ACM/IEEE SEC. Article 24, 2 pages.

[14] Amit Samanta and Yong Li. 2018. Poster: Latency-Oblivious Incentive Service
Offloading in Mobile Edge Computing. In ACM/IEEE SEC.

[15] Amit Samanta and Yong Li. 2018. Time-to-Think: Optimal Economic Considera-
tions in Mobile Edge Computing: Poster. In IEEE INFOCOM WKSHPS. 1–2.

[16] Amit Samanta and Yong Li. 2019. Cost-effective microservice scaling at edge:
Poster. In ACM/IEEE SEC. 326–328.

[17] Amit Samanta, Yong Li, and Flavio Esposito. 2019. Battle of Microservices:
Towards Latency-Optimal Heuristic Scheduling for Edge Computing. In IEEE
NetSoft. 223–227.

[18] Amit Samanta, Tri Gia Nguyen, Thao Ha, and Shahid Mumtaz. 2022. Distributed
resource distribution and offloading for resource-agnostic microservices in in-
dustrial iot. IEEE TVT 72, 1 (2022), 1184–1195.

[19] Amit Samanta, Quoc-Viet Pham, Nhu-Ngoc Dao, Ammar Muthanna, and Sun-
grae Cho. 2023. mISO: Incentivizing Demand-Agnostic Microservices for Edge-
Enabled IoT Networks. IEEE TSC (2023).

[20] Amit Samanta and Ryan Stutsman. 2023. A Case of Multi-Resource Fairness for
Serverless Workflows (Work In Progress Paper). In ACM/SPEC ICPE. 45–50.

[21] Amit Samanta and Jianhua Tang. 2020. Dyme: Dynamic microservice scheduling
in edge computing enabled IoT. IEEE IoTJ 7, 7 (2020), 6164–6174.

[22] Dongzhu Xu et al. 2022. Tutti: coupling 5G RAN and mobile edge computing for
latency-critical video analytics. In ACM MobiCom. 729–742.

[23] Dianlei Xu, Amit Samanta, Yong Li, Manzoor Ahmed, Jianbo Li, and Pan Hui.
2019. Network Coding for Data Delivery in Caching at Edge: Concept, Model,
and Algorithms. IEEE TVT (2019).

[24] Shuochao Yao et al. 2020. Deep compressive offloading: Speeding up neural
network inference by trading edge computation for network latency. In ACM
MobiSys. 476–488.

[25] K. Zhang et al. 2016. Energy-Efficient Offloading for Mobile Edge Computing in
5G Heterogeneous Networks. IEEE Access (2016).

	Abstract
	1 Introduction
	2 QoS-Aware Resource Management for Microservice Environments
	3 Preliminary Results
	4 Future Directions
	References

